SMILE Symptomatic minor instability of the lateral elbow

Paolo Arrigoni, MD

Milan, Italy

ASST Gaetano Pini – CTO

Università degli Studi di Milano

Financial Disclosure

Royalties - Adler Ortho, ITALY

Consultancy - Arthrex inc, USA

Partner – BeeMed

Acute – Traumatic

Postero Lateral Rotatory Instability

Compression - valgus stress - supination

Singleton 2004 – O' driscoll 2000

LCL avulsion from capitulum humeri (52%)

Minor Atraumatic Lateral Elbow Pain and Instability

No dislocation

4 dislocations Posterolateral Rotatory Instability

Negative ballottment

Chronic Lateral Elbow pain

Dynamic stabilization

Late Failure and Tendinopathy

1 - Horizontal PRUJ instability – RH Chondropathy

2 - Radial neck exposure ("loose collar" sign) RH Ballottment Diffuse patholaxity

3 - Synovitis

4 CLAC lesion" - Condropathy of the Lateral Aspect of the Capitellum"

5 - Capsular Lesion

M. Cresp

M. Crespe

- S ymptomatic
- M inor
- I nstability of the
- L ateral
- E lbow

EDUCATIONAL REVIEW

Open Access

Check for updates

Overuse-related instability of the elbow: the role of CT-arthrography

Andrea Zagarella^{1*}, Giulia Signorelli², Giulia Muscogiuri², Roberta Colombo², Gianluca Folco², Paolo Arrigoni³, Mattia Radici⁴, Pietro Simone Randelli^{5,6,7} and Mauro Battista Gallazzi¹

Open Access

Check for

Overuse-related instability of the elbow: the role of CT-arthrography

Andrea Zagarella^{1*}, Giulia Signorelli², Giulia Muscogiuri², Roberta Colombo², Gianluca Folco², Paolo Arrigoni³, Mattia Radici⁴, Pietro Simone Randelli^{5,6,7} and Mauro Battista Gallazzi¹

 Table 1
 Variables and possible scores for assessing elbow instability using the SMILE score

	0	1	2	3	4
Chondromalacia of the radial head dish	Absent	Present	-	-	-
Chondromalacia of the radial head side	Absent	Present	2	2	-
Chondromalacia of the central capitellum	Absent	Present	π.	-	
Chondromalacia of the Lateral Aspect of the Capitellum (CLAC)	Absent	Present	-	-	-
Chondromalacia of the lateral trochlear ridge	Absent	Present	-	-	-
Synovial thickening	Absent	Anterior or posterior	Anterior and posterior	÷	-
Joint space asymmetry	Absent	Present	-	-	-
Annular ligament	Normal	Patholaxity	Dislocation (within distal 50% of radial head)	Dislocation (beyond distal 50% of radial head)	-
Articular capsule	Normal	Patholaxity	Ligament permeation	Extensor tendon permeation	Full-thickness tendon tear

ARTHRO-CT SIGNS

- **1. C:** chondropathy
 - 2. S: synovitis
- **3.** I: iodinated fluid impregnation
 - 4. P: patholaxity/loose collar

Arthro CT - Diagnostic performance

MR arthrography

ARTRO RM PDw fat sat Hightest joint pressure Foot-print tear

Flexion Arthrography MR

Flexed elbow Anterior capsular wall Postero lateral capsular wall

Partial tear Extensor tendon contrast media infiltration

Coutesy of A.Aliprandi

Prono – supination study : chondral defect in chronic SMILE sindrome

Radial Head Condropathy

Annular laxity

Role of R-LCL

Study design

Ten fresh-frozen cadaver specimens Humerus fixed, hand hanging free, 60° elbow flexion

Stress testing sequence:

under gravity load alone (0)

0,5 kg applied load to the hand (1)

1 kg load applied load to the hand (2)

Study design

Release sequence:

- a. No release
- b. Release anterior half of the CEO
- c. Pie crusting of the R-LCL
- d. Complete R-LCL release

Complete preservation of LUCL

Study design

Outcome parameters:

Dynamic ultrasound (US) examination \rightarrow lateral joint line widening (λ)

Fluoroscopy with radiocapitellar AP projection \rightarrow varus joint angulation of the elbow (α)

Schnetzke M et al. J Orthop Surg Res. 2015;10(1):128.

Significant changes in α from the initial condition occurred after each release

A significant effect of weight on α was documented for all release steps.

CEO 1/3 of lateral elbow stability against varus-pronation stress, R-LCL 2/3

A linear regression model to describe the effect of applied load (m) on α was created

 $\alpha = 2.116 \ ^{\circ}/kg \cdot m + 3.346 \ ^{\circ}$

latrogenic damage to the anterior half of the CEO (ECRB!)

Overloads

the lateral static stabilizers <u>as constantly carrying</u> <u>a 0,66 L bottle of beer does on a healthy elbow</u>

Results: dynamic ultrasound evaluation

	Basal condition	0.5 kg varus	Release of the anterior	Complete release
	(no releases, no stress)	stress	half of the CEO	of the R-LCL
	2.13 (± 0.46)	3.11 (± 0.45)	6.39 (± 1.67)	7.00 [5.25-7.65]
Elongation (% increase)	-	+ 46%	+ 200%	+ 228%
p-value to basal conditio	n	0.0008	0.0156	
p-value to previous relea	ise step	0.0015	0.5703 (n.s.)	

Ultrasound can detect changes related to injuries of the CEO <u>but is</u> <u>not able to detect an additional lesion of the R-LCL</u>

MAJOR IMAGING !!

Set up

Safe area S. Kamineni,B. Morrey JBJS

2 years follow up

Good / excellent in 95% of the cases

Remember always to SMILE !!

Role of R-LCL against VARUS Varus Pronation model Releasing R-LCL (Classic open procedure) is at potential risk Intrarticular further imaging needed

ASST Gaetano Pini – CTO

Università degli Studi di Milano

Thanks

Paolo Arrigoni, MD Milan, Italy

ASST Gaetano Pini – CTO

Università degli Studi di Milano

